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Ahstract4J~aotic mixing in laminar flows at high Schmidt numbers is considered: the time taken for 
molecular diffusion to erase the concentration gradient created by advection is estimated. The energy 
dissipated du.ring mixing in a Stokes flow is calculated, and compared with that for a turbulent flow. It is 
shown that, ;at high Schmidt numbers, laminar mixing is more energy-efficient than turbulent mixing. A 
parameter is .then introduced that takes into account both the time spent in mixing and the energy dissipated 
during this tlune: in fact, it is the product of time taken and energy dissipated. Again, at high Schmidt 
numbers, a Stokes flow is shown to be more efficient even when judged by this parameter. 0 1997 Elsevier 

Science Ltd. 

1. lNlRODUCllON 

As is well known, mixing implies not only a stirring 
process, which tran:sports mechanically fluid particles 
and distributes them more uniformly, but also a 
diffusion process, which smoot@ the concentration 
gradients created by advection. Mixing is thus a 
difficult problem from its very definition. However, as 
difficult a problem is the ‘how’, and when asked ‘how 
to mix’, the fluid mechanic is tempted to answer ‘by 
making the flow turbulent’. After all, a turbulent flow- 
field is three-dimensional and random, which allows 
efficient stirring, and creates very thin structures that 
further the effects of molecular diffusion. However, is 
this choice always the best? If it is supposed, for exam- 
ple, that the fluids that must be mixed are very viscous, 
then making the flow turbulent implies a large energy 
dissipation rate. On the other hand, the energy dis- 
sip’ation required’in a Stokes flow is very small, but 
full mixing takes longer. 

The fact that a la.minar flow can generate efficient 
stirring thanks to chaotic trajectories has been studied 
a lot [l-9]. Stirring in a Stokes flow between two 
eccentric cylinders lhas been considered both exper- 
imentally and numerically [lO-151. Curiously, the 
effects of molecular diffusion have only been studied 
in a few papers [ 14,15,16-l 81, in alniost all of which- 
except for that by Ott-and Antonsen [17]-the kine- 
matics gf a fluid par tic16 located at x was modelled by 

.$= v(x,t)+r(f) 

where V(x, t) is the deterministic velocity field, and 
r(t) is a Brownian motion which models the effects of 
molecular diffusion [ 191. 

t Author to whom correspondence should be addressed. 

For chaotic flows, attention is restricted in this 
paper to Stokes flows, which are known to be incom- 
pressible flows. The following analysis holds for both 
two-dimensional time periodic flows, and three- 
dimensional stationary flows: in those two cases, 
because of incompressibility, there is a single positive 
Lyapunov exponent A, and a sir@e negative Lya- 
punov exponent equal to -1. In the three-dimen- 
sional case, the third exponent is equal to zero. Indeed, 
when chaos is homogeneously global, 1 does not 
depend on the initial location of the blob [20]. The 
effects of molecular diffusion are studied theoretically. 
The time at which the smallest scalar scale of the 
flow is reached is found, i.e. when the concentration 
gradient created by advection begin to be smaothed 
by diffusion. It is shown that diffusion is enhanced by 
chaotic advection. The energy dissipated in a Stokes 
flow is then calculated, and compared with the case 
when the flow is turbulent. In the last section, a new 
parameter is introduced that takes into account both 
the mixing time and the energy dissipated. The choice 
between laminar and turbulent mixing is discussed. 

2. EFFECTS OF DIFFUSION IN STOKES FLOWS 

2.1. Dimensional analysis 
Using dimensional analysis, a search is first made 

for a general law for the time, TdiE, at which molecular 
diffusion begins to act significantly. When the fluid is 
at rest, this time depends only on the thickness, L, of 
the blob to be mixed; and on the molecular diffusion 
coefficient, D. Using dimensional analysis gives 

L= 
7diff 5 - * 

D 

In the presence of advection, this time will also depend 
on the velocity gradient, say u N V/L, where V is a 
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NOMEIWLATURE 
C concentration field V characteristic velocity 
D molecular diffusion coefficient V velocity vector 

k(k) 
base of natural logarithms WS,, total energy dissipated per unit volume 
energy spectrum in the Stokes flow 

f arbitrary function W turb total energy dissipated per unit volume 
G concentration gradient vector in the turbulent flow 
i subscript integer for a vector X position vector. 

component, i = 1,2,3 
Z parameter quantifying the mixing 

efficiency Greek symbols 
j subscript integer for a vector a velocity gradient 

component, j = 1,2,3 E dissipation rate per unit mass 
k wave number tl Kolmogorov scale, L/R&$ 
1 size of a blob in the smallest direction rlC Batchelor scale, TV/@ 
Lnd typical size of an unstirred island 1 Lyapunov exponent 
L characteristic length scale p viscosity of the fluid 
Pe Pellet number, VL/D V kinematic viscosity of the fluid, p/p 
4’ energy associated with the velocity 5 Brownian motion vector 

fluctuations density of the fluid 
Re Reynolds number of the Stokes flow, f(Z) characteristic time based on an eddy 

of size 1 
Ret,* Eklent Reynolds number, fiL/v @ power dissipated per unit volume in 
SC Schmidt number, v/D the Stokes flow 
t time ‘5diR time when molecular diffusion begins 
T characteristic time-scale to act significantly 
fl time taken for a blob of size L to reach (%R),urb time when molecular diffusion 

size TV becomes important in the turbulent 

7? time taken for a blob of size r~ to reach flow 
size flC & mixing time with an unstirred island. 

characteristic velocity of the Stokes flow. Using result without advection given by (2) should be reco- 
dimensional analysis, gives vered : thus 

TditTmdf F)-;f($) (3) 
f(Pe) = Pe (6) 

in equation (3). This result applies when the diffusive 
where f is a function that depends on the given flow- time, L’/D, is much less than the convective time, L/V, 
field. In this formulation, one can recognize the P&let that is, when 
number. Pe. of the flow 

I  I  

Pe=%. 

This may also be rewritten using the Reynolds 
number, Re = I/L/v, of the flow, and the Schmidt 
number, SC = v/D, where v is the kinematic viscosity 
of the fluid, as 

If the coefficient D decreases, Pe increases. Moreover, 
physically, the time when molecular diffusion becomes 
important increases as D decreases. Thus, f is an 
increasing function of Pe. Observe that the smaller f 
is, the less time it takes to mix. First suppose that,the 
effects of advection are negligible. In this case, the 

-=vL=Pec 1. 
L’/D 

L/V D (7) 

Thus, equation (6) must hold when Pe is small. If 
advection is significant, i.e. Pe is not small, there is a 
function f which is a growing function of Pe, but 
which grows less rapidly than Pe since advection 
should enhance mixing, and hence decreasef. A classi- 
cal result when the flow is laminar and non-chaotic is 
that rdiR behaves like SC’” for’large Pe, which implies 
that 

f(Pe) = Pe’/3 (8) 

It is expected that f is further decreased when the flow 
is chaotic, and it will be shown later that this is the 
case. 
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2.2. Effects of diffusion with chaos 
According to the Fick law, the effects of molecular 

diffusion become more important as the concentration 
gradient increases. Consider a blob of dye submitted 
to a steady strain: it becomes thinner and thinner in 
the direction of contraction, and longer and longer in 
the other direction. After a while, this blob no longer 
becomes thinner, since molecular diffusion enlarges it 
at the same rate as it is contracted by the strain: at 
that time, the conce:ntration gradient, G, defined as 

ac 
Gi = axi 

has a time derivative equal to zero. If we look at the 
equation of evoluticmn of G : 

E! _- 
dt 

-- -Gig +DAGi (10) 

it is seen that the two terms on the right-hand side of 
equation (10) must then become of the same order of 
magnitude, and m’olecular diffusion becomes sig- 
nificant. As will be seen, the case of mixing in an 
incompressible chaotic flow is not different. 

For analysis, it will be supposed that advection 
acts first, until the concentration gradients are great 
enough for diffusion to become non-negligible. This 
happens when the diffusive time is much greater than 
the convective time, i.e. 

VL 
Pe=-->> 1. 

D 

Come back to equation (10). The first term on its 
right-hand side is the term for creation of con- 
centration gradient by advection. It involves the local 
velocity gradient governing contraction, which, in a 
chaotic flow, is the most negative Lyapunov exponent 
[ 171, here - 1. The second term is the term for destruc- 
tion of the concentration gradients by molecular 
diffusion. The two terms become of the same order of 
magnitude when t = zdiR, which implies that 

a D N- 
I2 (kiff) 

(1% 

where l(t) is the smallest size of the blob after time t, 
i.e. its size in the diaection of contraction, once again 
governed by the malst negative Lyapunov exponent, 
-1: 

Z(<l N Lexp( -At) (13) 

where it is supposed. that the blob has an initial size 
L. 

In order to satisfy equations (12) and (13) 

1 AL2 
7diff N ,ln- n (14) 

LA Y 

is obtained. This result was already known to Ott and 
Antonsen [ 171, who had derived it from the evolution 
equation for the typical separation 6 between two 

points. It shows that, for a given flow, the time rdir at 
which the effects of molecular diffusion compensate 
contraction by the flow-field varies as In l/D, which is 
also in agreement with the scaling obtained by Aref 
and Jones [16]. 

In the derivation of equation (14), the hypothesis 
of a Stokes flow was not used. However, when com- 
paring equation (3) with equation (14), it is obvious 
that 1 is proportional to the mean velocity gradient in 
the flow. This may be explained as follows : in a Stokes 
flow, the equations of motion are linear. Therefore, 
changing the characteristic velocity V of the flow just 
changes the characteristic time-scale T, but not the 
topology of the trajectories : for example, if V is mul- 
tiplied by 2, T is divided by the same factor, so as to 
keep the characteristic length scale VTconstant. Now, 
by looking at equation (13), it can be seen that the 
product 1T must also be kept constant in order to 
have the same length scales, which is also verified by 
multiplying 2 by 2. The Lyapunov exponent is thus 
proportional to the mean velocity gradient. Note that 
this last result would not be available in an inviscid 
fluid because of the non-linearity of the equations for 
the flow-field. Thus, letting 1 N V/L in equation (14) 
gives 

L VL 
7diA - yln7. 

This last equation implies that 

1 
f(Pe) = -In Pe. 

2 

When written using Re and SC, 

(15) 

(16) 

is obtained. It is recalled that this result requires that 
Pe >> 1, which gives 

ReSc >> 1. (18) 

Figure 1 shows the variation of the mixing time 7diff in 
a Stokes flow as a function of Re. It can be seen that 
the mixing time is a rapidly decaying function of Re 
as soon as Re > e/SC (e being the base of natural 
logarithms), which includes the zone of validity, 
Pe >> 1, of formula (17). When Re = e/SC i.e. Pe = e, 
which is the lower limit of equation (17), it follows 
that 

L2 SC 
7difl N 5 e (19) 

while at very small Re, Pe << 1, 7dx is given by 

7&R - Tsc (20) 

which agrees with equation (19) in order of magni- 
tude. 
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Fig. 1. Graph of Q,~ as a function of Re in a Stokes flow. 

However, it is not at all common that a Stokes 
flow would mix perfectly on advective time-scales : 
a completely chaotic phase space is needed for this. 
Indeed, in many experiments, islands of poor stirring 
remain in the flow, which are quite difficult to get rid 
of (the choice of the parameters for efficient stirring 
is, in fact, the main difficulty in chaotic mixing). When 
chaos is global, the smallest length scale of the flow, 
Z(7&, is given by equation (12) with I N V/L : 

z(7difi~ 
-$T 

(21) 

This length scale might be very small at very high Pe. 
If the unstirred island has a typical size lisbland which is 
bigger than that, it will get mixed on the diffusive 
time-scale z& given by equation (2) for L = fistand : 

Gh.4 7&i@ N -. 
D (22) 

Thus, 7& might be much greater than zdia, so that 
good mixing could take much longer when unmixed 
islands remain in the chaotic flow. In the following, it 
will be supposed that the stirring is efficient, i.e. the 
phase space is completely chaotic, and rdiK will be 
taken as the mixing time. 

In both cases, mixing is achieved when molecular 
diffusion erases the concentration gradients created 
by advection, i.e. when the minimal scalar scale is 
reached. 

3. ENERGY SAVlNG 
3.1. Energy dissipation in a chaotic Stokesflow 

The power @ dissipated per unit volume in a Stokes Compare two different situations of mixing of two 
fluids having the same density p and viscosity p (pas- flow is 

sive tracer). In the first case, the velocities are very 
small (Stokes flow), but the trajectories are chaotic; 
in the second one, mixing is realized by making the 
flow turbulent. It is obvious that the ratio of the energy 
dissipated which comes into play is very large, but 
what about the ratio of required energies? This prob- 
lem is studied in the case of a high SC, which requires 
a very viscous fluid. Mixing is carried out in a domain 
having a characteristic length L, and, as before, the 
characteristic velocity in the Stokes flow is denoted by 
V. Thus, the Re of the Stokes flow is 

Re=‘L<< 1. 
v 

As usual, the characteristic velocity in the turbulent 
flow is defined as the square-root of the mean energy 
associated with the velocity fluctuations, denoted by 
fl. Thus, the turbulent Re, Returb, is defined by 

Returb = l!?!!f% >> 1. 
” 
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(25) 

The time rdiff it takes for a blob of typical size L to 
stretch and shrink in width to the smallest size of the 
scalar field is given by equation (17). 

The total energy., B’s,,, dissipated per volume unit 
is 

pw L Re ln(Re SC). 
2pL2 

3.2. Energy dissipation in a turbulentJIow 
3.2.1. Power dissipated. It is supposed that tur- 

bulence is such that the large structures have a typical 
size L. The power d.issipated per unit volume is 

(?) 3’2 pE-py. (27) 

It is now worthwhile to estimate the time (rdi,&, 
when molecular difl’usion becomes important, that is, 
the time when the smallest scalar scale is reached. 

3.2.2. Mixing time. Firstly, a blob of size L is dis- 
torted during a time lapse Tfl. and reaches the smallest 
velocity length scale, the Kolmogorov scale, r~, which, 
as usual, is 

L 

’ * RezA ’ 
(28) 

Then, it is further distorted to reach the smallest scalar 
length scale, the Batchelor scale, no which, at high SC, 
is given by 

In order to calculate the first contribution Tr, the 
reasoning done by :Broadwell and Briedenthal [21] is 
used, which supposes that a blob of size I (ye < 16 L) 
is mainly distorted by the eddies of the turbulent flow 
that have the same ;size I: eddies of size greater than I 
merely convect it, and those that have a size smaller 
than 1 do not affect it. Thus : 

ldf 1 ---N_ 
1 dt r(Z) (30) 

where r(r) is the characteristic time based on an eddy 
of size 1. Such an eddy has an energy per unit mass of 
order q*(Z), so that 

N 1--3/*pqk) (31) 

where k u l/Z is the wave number, and E(k) is the 

energy spectrum. Since it is supposed that Returb >> 1, 
in the inertial range of scales between n and L the 
Kolmogorov spectrum 

? E(k) N E2’3k-5/3 .., ---&5!3 (32) 

which, when combined with equation (3 I), gives 

L N &?(1)-*,3, 
r(l) 

(33) 

Integration of equation (3) between I = L and I = y 
then gives 

T;I N--&_[l-(i”)“‘] 

-$-$zl. (34) 

This reasoning is extended in the range Q G I < q, by 
supposing that the eddies that affect the scalar field 
are the smallest eddies, i.e. those having the size of 
the Kolmogorov microscale, V. Thus, letting I= n in 
equation (30), and using equations (33) and (28), gives 

1 dl fl -2,) 

----“---? 1 dt ~‘1~ 

Integration between I= q and I= qC gives 

qc - -$$=Jn;. (36) 

This may be rewritten using equation (29) as 

7+&-14. (37) 

The total time (rdi&b = FL + qC, for a blob of size 
L to reach the Batchelor microscale, nC is therefore 

(fditT)turb _L 1+- fl [ &(lnJSC- 1) 1 
(38) 

Note that, at very high Re, (Tdie)t”rb no longer depends 
on the SC, which is in agreement with the analysis 
given by Broadwell and Breidenthal[21]. 

3.2.3. Energy dissipated. From equations (38) and 
(27), the energy dissipated per unit volume of domain 
for the mixing process in a turbulent flow is obtained : 

W tub N &difThurb 

In&-l 

&CIb > 
(39) 

3.3. Energy saving 
Compare the ratio of the energy dissipated in the 

Stokes flow and the turbulent flow, given, respectively, 
by equations (26) and (39) : 
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WS,O Reln(ReSc) -N 
W (4) 

t”rb 
2Re?U,b 1 + 

In&-l 

6 > 

Now, it is supposed that Re N 1, but that Pe = 
ReSc >> 1. Thus, the logarithms in formula (40) have 
large arguments. However, the logarithm is a very 
weakly growing function at large arguments, and the 
dominant behaviour is 

which is small because of equations (23) and (24). 
Thus, a chaotic Stokes flow requires much less energy 
than a turbulent flow. 

4. THE ENGINEERING POINT OF VIEW 

To sum up the situation : in the first case, the flow 
is laminar, and the energy dissipated to achieve the 
mixing is low. In the second case, the flow is turbulent, 
and the energy dissipated is large. However, the ratio 
of the mixing times for the two cases, given, respec- 
tively, by equations (17) and (38), is 

7diN Returb ln(Re SC) 

(7diff)turb - 2Re l+lnfi-l 

& 

1 Returb x-->> 1 
2 Re 

The Stokes flow takes much longer to effect mixing. 
Which is best? Is the fact that the energy dissipated is 
much less in the Stokes flow sufficient if the mixing 
time is very long? 

4.1. A new parameter for mixing 
It is proposed to introduce another parameter to 

quantify the efficiency of mixing, denoted by I. It is 
defined to be the product of the energy dissipated and 
the mixing time 

z N WTdifp (43) 

Mixing is most efficient when Z is at its minimum. 
In the Stokes flow, from equations (17) and (26) : 

Z sto N $ln2(ReSc). 

Owing to the slow growth of the logarithm function, 
Is,, depends only weakly on the Reynolds number of 
the flow, and is nearly a characteristic of the fluid. In 
the case of turbulent mixing, from equations (38) and 
(39) : 

Z 
In&--1 2 

t”rb - P Returb 1+ 
&ii > 

(45) 

and ZtUrb is roughly proportional to the Re of the flow. 
This reflects the fact that increasing Re too much is 

wasteful, since the energy lost is much greater than 
the reduction in mixing time. 

4.2. Comparison of the Stokes flow and the turbulent 
flow 

The ratio of Z in the Stokes flow to that in the 
turbulent flow is 

Z St0 1 

2 N 4RetU,b Z (46) 

Now consider the mixing of a contaminant in a very 
viscous fluid, for which molecular diffusion is weak : 
SC is, say, lOI (fluorescent contaminant in glycerine) 
[22]. Suppose that the mixing can be achieved for a 
slightly supercritical turbulent flow, for which Re,,, 
might be, say 100 (this is actually the lower limit for 
a turbulent flow): The aim is to compare the ratio 
Zs,,/Z,,,, when the Stokes flow is such that its Re is 
equal to unity (this is indeed the upper limit for a 
Stokes flow). In those extreme conditions : 

Z sto 7 N 0.37 < 1. (47) 
llurb 

Thus, it can be seen that laminar mixing is more 
efficient than turbulent mixing, even judged by the 
parameter Z, which includes the energy and time taken 
on an equal footing. However, it must be observed 
once again that this result only applies when SC is very 
large, since the mixing time in the Stokes flow was 
calculated using hypothesis (11) which, together with 
equation (23), implies that 

1 
--<< Re<< 1. 
SC 

SC must be at least of order lo4 (say), which likely 
happens in very viscous fluids. Moreover, it has pre- 
viously been supposed that chaos was global in the 
flow, so that stirring was efficient. When this is not 
the case, the mixing time [given by equation (22)] 
might be much longer, and, because of this, the recal- 
culated ratio Zsto/ZtUa could be larger than unity. The 
importance of efficient stirring is indeed crucial in 
chaotic mixing. 

5. SUMMARY AND CONCLUSION 

In this paper, mixing in chaotic Stokes flows and 
turbulent flows has been compared. The mixing time 
in a chaotic laminar flow has been calculated theor- 
etically, defined as the time when the concentration 
gradients created by advection are smoothed by the 
molecular diffusion. It is found that this time varies 
with SC as In (SC), which shows that chaotic advection 
greatly enhances the effects of diffusion. However, 
despite the smoothing effects of the logarithm func- 
tion, this time may be quite long at high SC. The 
powers dissipated.in a turbulent flow and a Stokes 
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flow were then calculated, which, when multiplied by 
the mixing time give the energy dissipated in both 
cases. On the one hand, mixing in turbulent flows is 9, 
very rapid compared to chaotic flows, but, on the 
other hand, chaotic mixing is much more energy- 
saving. The questison which arises is thus the fol- lo. 
lowing : is it better to mix by making the flow turbulent 1 1 

’ (energy-wasting but very rapid) or by a Stokes flow 
with chaotic trajectories (energy-saving but quite 
long)? It is proposed that one compares the product 
of the energy dissipated by the mixing time in the two 12. 

cases, and chooses the lowest : it is shown that, at a 
very high SC (= 1 O4 at least), mixing in globally chaotic 13. 
Stokes flow is marl: efficient than turbulent mixing, 
and this result is to be taken into account in the case 
of very viscous fluids. 14. 
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